A Coupled AKNS-Kaup-Newell Soliton Hierarchy

نویسندگان

  • Wen-Xiu Ma
  • Ruguang Zhou
چکیده

A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of the systems lead to the AKNS hierarchy and the Kaup-Newell hierarchy, and thus those two soliton hierarchies also possess tri-Hamiltonian structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenfunctions of linearized integrable equations expanded around an arbitrary solution

Complete eigenfunctions of linearized integrable equations expanded around an arbitrary solution are obtained for the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and the Korteweg-de Vries (KdV) hierarchy. It is shown that the linearization operators and the recursion operator which generates the hierarchy are commutable. Consequently, eigenfunctions of the linearization operators are precisely ...

متن کامل

Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients

In this paper, Whitham–Broer–Kaup (WBK) equations with time-dependent coefficients are exactly solved through Hirota’s bilinear method. To be specific, the WBK equations are first reduced into a system of variable-coefficient Ablowitz–Kaup– Newell–Segur (AKNS) equations. With the help of the AKNS equations, bilinear forms of the WBK equations are then given. Based on a special case of the bilin...

متن کامل

Two-fold integrable hierarchy of nonholonomic deformation of the DNLS and the Lenells-Fokas equation

The concept of the nonholonomic deformation formulated recently for the AKNS family is extended to the Kaup-Newell class. Applying this construction we discover a novel mixed integrable hierarchy related to the deformed derivative nonlinear Schrödinger (DNLS) equation and found the exact soliton solutions exhibiting unusual accelerating motion for both its field and the perturbing functions. Ex...

متن کامل

Integrable Hierarchies and Wakimoto Modules

In our papers [20, 21] we proposed a new approach to integrable hierarchies of soliton equations and their quantum deformations. We have applied this approach to the Toda field theories and the generalized KdV and modified KdV (mKdV) hierarchies. In this paper we apply our approach to the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [1] and its generalizations. In particular, we show that the fr...

متن کامل

Integrable Hierarchies and Wakimoto Realization

In our papers [20, 21] we proposed a new approach to integrable hierarchies of soliton equations and their quantum deformations. We have applied this approach to the Toda field theories and the generalized KdV and modified KdV (mKdV) hierarchies. In this paper we apply our approach to the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [1] and its generalizations. In particular, we show that the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999